Comparing Within- and Between-Family Polygenic Score Prediction
نویسندگان
چکیده
منابع مشابه
WBSMDA: Within and Between Score for MiRNA-Disease Association prediction.
Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential miRNA-disease associations by integrating various ...
متن کاملStructural Brain MRI Trait Polygenic Score Prediction of Cognitive Abilities.
Structural brain magnetic resonance imaging (MRI) traits share part of their genetic variance with cognitive traits. Here, we use genetic association results from large meta-analytic studies of genome-wide association (GWA) for brain infarcts (BI), white matter hyperintensities, intracranial, hippocampal, and total brain volumes to estimate polygenic scores for these traits in three Scottish sa...
متن کاملMulti-polygenic score (MPS) approach to trait prediction
A primary goal of polygenic scores, which aggregate the effects of thousands of trait-associated DNA variants discovered in genome-wide association studies (GWASs), is to estimate individual-specific genetic propensities and predict outcomes. This is typically achieved using a single polygenic score, but here we use a multi-polygenic score (MPS) approach to increase predictive power by exploiti...
متن کاملPRSice: Polygenic Risk Score software
SUMMARY A polygenic risk score (PRS) is a sum of trait-associated alleles across many genetic loci, typically weighted by effect sizes estimated from a genome-wide association study. The application of PRS has grown in recent years as their utility for detecting shared genetic aetiology among traits has become appreciated; PRS can also be used to establish the presence of a genetic signal in un...
متن کاملPredicting Drug-Target Interactions via Within-Score and Between-Score
Network inference and local classification models have been shown to be useful in predicting newly potential drug-target interactions (DTIs) for assisting in drug discovery or drug repositioning. The idea is to represent drugs, targets, and their interactions as a bipartite network or an adjacent matrix. However, existing methods have not yet addressed appropriately several issues, such as the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The American Journal of Human Genetics
سال: 2019
ISSN: 0002-9297
DOI: 10.1016/j.ajhg.2019.06.006